Stat 155 Lecture 5 Notes

Daniel Raban

February 1, 2018

1 Solving Two-player Zero-sum Games

1.1 Saddle points

Consider a zero-sum game with the matrix

$$\begin{pmatrix} -1 & 1 & 5\\ 5 & 3 & 4\\ 6 & 2 & 1 \end{pmatrix}.$$

Suppose both players choose their 2nd move; the payoff is $a_{2,2} = 3$. Should either player change their strategy? No. This would decrease the payoff for either player. This is called a saddle point, or a pure Nash equilibrium.

Definition 1.1. A pair $(i^*, j^*) \in \{1, \dots, m\} \times \{1, \dots, n\}$ is a saddle point for a payoff matrix $A \in \mathbb{R}^{m \times n}$ if

$$\max_{i} a_{i,j^*} = a_{i^*,j^*} = \min_{j} a_{i^*,j}.$$

If Player 1 plays i^* , and Player 2 plays j^* , neither player has an incentive to change. Think of saddle points as locally optimal strategies for both players. We will also see that these are globally optimal.

Theorem 1.1. If (i^*, j^*) is a saddle point for a payoff matrix $A \in \mathbb{R}^{m \times n}$, then

- 1. e_{i^*} is an optimal strategy for Player 1.
- 2. e_{j^*} is an optimal strategy for Player 2.
- 3. The value of the game is a_{i^*,j^*} .

Proof. We have seen that we should always prefer to play last, but with a saddle point, the opposite inequality is also true:

$$\min_{y \in \Delta_n} \max_{x \in \Delta_m} x^\top A y \ge \max_{x \in \Delta_m} \min_{y \in \Delta_n} x^\top A y$$

$$\geq \min_{\substack{y \in \Delta_n}} e_i^{\top} Ay$$
$$= e_i^{\top} A e_{j^*}$$
$$= \max_{x \in \Delta_m} x^{\top} A e_{j^*}$$
$$\geq \min_{y \in \Delta_n} \max_{x \in \Delta_m} x^{\top} Ay$$

Observe that $a_{i^*,j^*} = e_{i^*}^\top A e_{j^*}$.

1.2 Removing dominated pure strategies

Another way to simplify a two-player zero-sum game is by removing dominated rows or columns.

Example 1.1. Here is a game called Plus One. Each player picks a number in $\{1, 2, ..., n\}$. If i = j, the payoff is 0 If |i - j| = 1, the higher number wins 1. If $|i - j| \ge 2$, the higher number loses 2. Here is the payoff matrix.

	1	2	3	4	5	6	• • •	n-1	n
								2	
								2	
								2	
								2	
								2	
6	-2	-2	-2	-2	1	0	•••	2	2
÷	÷	÷	÷	÷	·	·	·	·	
								0	
n	-2	-2	-2	-2	-2	-2	• • •	1	0

If one row is less than another (entry by entry), we can remove the lesser row from the matrix because Player 1 would never choose a strategy in that row. Similarly, we can drop columns that are larger in every entry than other columns. After we remove rows and columns, we get

$$\begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix}.$$

Example 1.2. Here is a game called Miss-by-one. Player 1 and 2 choose numbers $i, j \in \{1, 2, ..., 5\}$. Player 1 wins 1 if |i - j| = 1; otherwise, the payoff is 0. The matrix is

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

If we remove useless rows (1st and 5th) and columns (3rd), we get

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

1.3 2×2 games

Consider a zero-sum game with matrix

$$\begin{array}{c|cc} L & R \\ \hline T & c & d \\ B & a & b \end{array}$$

Assume all the values are different. Without loss of generality, a is the largest. There are six cases, then. The following four cases have saddle points:

1. a > b > c > d2. a > b > d > c3. a > c > b > d4. a > c > d > b.

If there are no saddle points, we should equalize mixed strategies. Writing $x_1 = P(T)$, we get

$$V = b + x_1(d - b),$$

$$V = a + x_1(c - a).$$

Solving this gives us

$$x_1 = \frac{a-b}{a-b+d-c}.$$

In more general notation, we get

$$x_1a_{1,1} + (1 - x_1)a_{2,1} = x_1a_{1,2} + (1 - x_1)a_{2,2},$$

$$y_1a_{1,1} + (1 - y_1)a_{1,2} = y_1a_{2,1} + (1 - y_1)a_{2,2}.$$

Solving gives us

$$x_1 = \frac{a_{2,1} - a_{2,2}}{a_{2,1} - a_{2,2} + a_{1,2} - a_{1,1}},$$

$$y_1 = \frac{a_{1,2} - a_{2,2}}{a_{1,2} - a_{2,2} + a_{2,1} - a_{1,1}}.$$